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EIGENVALUE COMPUTATIONS WITH THE QUAD4 CONSISTENT-MASS MATRIX

Thomas A. Butler

Los Alamos National Laboratory

SUMMARY

The NASTRAN user has the option of using either a lumped-mass

matrix or a consistent- (coupled-) mass matrix with the QUAD4 shell

finite element. At the Sixteenth NASTRAN Users' Colloquium (1988),

Melvyn Marcus and associates of the David Taylor Research Center

summarized a study comparing the results of the QUAD4 element with

results of other NASTRAN shell elements for a cylindrical-shell

modal analysis. Results of this study, in which both the lumped-

and consistent-mass matrix formulations were used, implied that the

consistent-mass matrix yielded poor resul_s. In an effort to

further evaluate the consistent-mass matrix, a study was performed

using both a cylindrical-shell geometry and a flat-plate geometry.

Modal parameters were extracted for several modes for both

geometries leading to some significant conclusions. First, there

do not appear to be any fundamental errors associated with the

consistent-mass matrix. However, its accuracy is quite different

for the two different geometries studied. The consistent-mass

matrix yields better results for the flat-plate geometry and the

lumped-mass matrix seems to be the better choice for cylindrical-

shell geometries.

INTRODUCTION

At the 1988 NASTRAN Users' Colloquium, results of a study

using the QUAD4, four-node, shell finite element for shell

vibrations was presented (ref. i). This study indicated that using

the QUAD4 element with a consistent-mass matrix results in poor

prediction of natural frequencies of a cylindrical shell. The

errors in predicted frequencies were small for lower circum-

ferential harmonics (n<4) and grew from approximately i0 per cent

for the fourth circumferential harmonic to over 20 per cent for the

sixth circumferential harmonic. The errors seemed to be relatively

independent of the longitudinal harmonics. The authors conclude

that the poor performance is probably caused by either a bad

formulation of the consistent-mass matrix or, more likely, a coding

error in the program. The QUAD4 element is described in reference
2.
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In an effort to determine whether either of the above reasons
for the poor results is correct, a study was undertaken at Los
Alamos to gain more insight into the problem. Earlier studies to
evaluate the performance of the element for static problems
indicate that the stiffness matrix formulation is correct. Also,
results reported in reference 1 for the QUAD4 element with a
lumped-mass matrix indicate that the problem is not with the
stiffness matrix because the error in frequency prediction is quite
low (less than 4 percent even for higher circumferential har-
monics). Of course, some degradation in accuracy is expected for
higher harmonics because the mesh density can become a limiting
factor.

As a first step in our evaluation, an independent check of the
formulation and coding was performed. No problems were found with
either the formulation or the coding. As a final check, the mass
matrix for a single element oriented at a skew angle to the global
coordinate system was calculated by hand, and then results of the
code were compared. There apparently are no errors in either the
formulation or the coding.

A brief review of the literature on the subject of consistent-
mass matrices does lend some insight into the problem. Clough and
Wilson (ref. 3) state that, if the consistent-mass formulation is
used with a displacement compatible element, resulting frequencies
are always larger than the true frequencies. With a lumped-mass
matrix, the frequencies may be above or below the true frequencies
leading to the possibility that use of the lumped-mass matrix
formulation _i_ result in more accurate frequency predictions. The
NASTRANTheoretical Manual (ref. 4) describes errors associated
with both consistent- and lumped-mass matrices for the rod
elements. Fortunately, in this case, the errors turn out to be
opposite in sign and of equal magnitude for lower-order terms.
Thus, an accurate mass matrix can be generated simply by averaging
the lumped- and consistent-mass matrices. The case does not appear
to be the same for shell elements. Stavrinidis et al. (ref. 5)
propose improved mass matrices for several elements, including the
one-dimensional bar, two-dimensional membrane, and the pure bending
beam element. Their method and other methods using so-called
"higher-order" mass matrices depend on the predicted frequencies
being consistently high or low. With significant effort, similar
methods may be applicable to the current three-dimensional shell
problem. However, as will be seen later in this paper, solutions
with the consistent-mass matrix for the QUAD4element can be either
high or low, depending on the geometry of the structure.

TEST PROBLEMS

Two test problems were chosen for this study. The first was
a free-free flat plate for whose natural frequencies we have
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closed-form, analytical solutions. The second was a right,

circular cylinder. Closed-form solutions do not exist for this

geometry, so the finite-difference code BOSOR (ref. 6) was used

with a fine mesh to establish the reference frequencies and mode

shapes. BOSOR results compare favorably with approximate solutions

presented by Blevins (ref. 7).

The flat plate was a 10 by i0, 0.l-thick square. Its elastic

modulus was 1.0 x l0 s, Poisson's ratio was 0.3, and the density was

1.0. Figure 1 shows the first three vibration modes of the plate

with the theoretical frequencies.

The cylindrical shell had a radius of 300 and a length of 600.

The material thickness was 3.0. Its elastic modulus, Poisson's

ratio, and density were 3.0 x 106 , 0.3, and 2.588 x i0-'. The

cylinder ends were simply supported without axial constraint (rigid

diaphragm). Table I gives the reference frequencies calculated

with BOSOR (ref. 6) for the cylindrical shell, along with the

approximate solutions given by Blevins (ref. 7).

FINITE ELEMENT MODELS

Three different finite-element codes were used to model each

of the two test problems. The finite-element code SPAR (ref. 8)

was used with its E43, four-node quadrilateral element. This

element is based on a mixed formulation first proposed by Plan

(ref. 9). For analyzing these problems both the lumped- and

coupled-mass matrices in the SPAR code were used. Because the E43

element is based on an assumed-stress function, rather than an

assumed-displacement function, its coupled-mass matrix is not

"consistent." That is, it is not derived from the same

displacement functions used in deriving the stiffness matrix. Two

types of elements were used with the ABAQUS finite-element code

(ref. i0). The S8R5 element is an eight-node element that has only

a consistent-mass matrix option. The S4R5 element is a four-node

element that offers only a lumped-mass matrix. Finally, NASTRAN

was used with the QUAD4 element with both the lumped- and the

consistent-mass matrix options. In addition, the problems were

analyzed with NASTRAN using a matrix that is the average of the

consistent- and lumped-mass matrices.

The flat plate was modeled with three mesh densities having

three, five, or seven nodes along each edge of the plate. ABAQUS
was not used with the coarsest mesh because that would have

resulted in a one-element mesh for the eight-node S8R5. The

cylindrical shell was also modeled with three different mesh

densities. These meshes had 5, 9, or 17 nodes on each edge. For

the ABAQUS eight-node element, fewer total nodes were present

because of the lack of the middle node. For this study, only one

eighth of the shell was modeled, and symmetry conditions were used

on all boundaries. Thus, only the even circumferential and odd

longitudinal harmonics were determined.
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All the NASTRAN solutions were obtained using the FEER
eigenvalue extraction method. The mass-orthogonality test
parameter was 0.0001 for the analyses.

RESULTS

Results for the flat plate are shown in figures 2 through 4.
In these figures, the horizontal axes show the number of nodes on
each side of the square mesh and the vertical axis is the natural
log of the absolute value of the error in predicted frequency. The
error is simply the ratio of the calculated frequency to the
theoretical frequency minus 1.0. For reference, a plotted
in(error) of -4.6 is approximately 1.0 per cent in error in
absolute frequency determination. A plotted value of -8.0 is
roughly equivalent to 0.03 per cent error.

The data points labeled "lumped," "consistent," and "average"
are all for the NASTRAN QUAD4 element. Study of the results
reveals some definite patterns. As might be expected, the
consistent-mass matrix always outperforms the lumped-mass matrix.
However, the rates of convergence seem to be approximately the
same. The SPAR results that were obtained by using the coupled-
mass matrix are consistently better than the NASTRAN results.
However, the convergence pattern is not smooth and, for all cases,
the SPAR E43 element with its coupled-mass matrix yields better
answers with the intermediate, rather than the fine, mesh. This
result is somewhat disturbing, although, in all cases, the errors
were small. The ABAQUS SSR5 element also gives slightly better
results than does the NASTRANQUAD4element. For the flat plate,
the elements with the consistent-mass matrix formulation always
overpredicted the frequencies and those with the lumped-mass
matrices always underpredicted the frequencies.

Results for the cylinder are not as clear as for the flat
plate. Figures 5 through 7 show the frequency-convergence
characteristics for the elements that are being considered for
three different modes. These involve the second, fourth, and sixth
circumferential harmonics (n=2,4,and 6) and the first longitudinal
harmonic (m=l). The most striking observation is that, for the
QUAD4 element, the lumped-mass matrix is now outperforming the
consistent-mass matrix. This observation seems to confirm the
result of Marcus (ref. i). To illustrate the point, data from
reference 1 have been added to the figures. Here, the definition
of the ordinate axis has to be qualified. In reference I, a 13
node by 37-node mesh was used in modeling one half of a cylinder.
This becomes a 7-node by 19-node mesh when an eighth of the
cylinder is considered, as is the case for this study. Because,
for the modes presented, only the first longitudinal harmonic is
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present, we can loosely define this as a 7 by 7 mesh and plot it
as such on our figures.

Only for the lower, second harmonic (fig. 5) does the ABAQUS
SSR5 element outperform the NASTRANlumped-mass element. For all
three modes, the QUAD4with the lumped-mass matrix yields the best
results. Its deviation from the QUAD4 with the consistent-mass
matrix increases with higher circumferential harmonics. The SPAR,
E43 element with a coupled-mass matrix tends to follow the QUAD4

element closely for these modes.

Except for a few cases, the frequencies were overpredicted

for consistent-, lumped-, and coupled-mass matrices for the

cylindrical-shell problem. The exceptions were the QUAD4 lumped-

mass matrix and the E43 coupled-mass matrix for the finest mesh for

the second and third modes considered here.

Frequency is not the only parameter that should be considered

for modal analyses. The other is, of course, the mode shape. One

method of comparing mode shapes is to compare calculated

generalized masses for the solutions using the different elements

being considered. Another is to use a parameter frequently

calculated when comparing calculated mode shapes with

experimentally measured mode shapes. This parameter is called the

mode shape correlation coefficient (MSCC) and is described in

reference Ii. It essentially provides a measure of the least-

squares deviation of the points being compared from a straight-line

correlation. Both these measures were used in comparing solutions

for the n=8, m=5 mode for the cylinder being considered here.

Results of these comparisons are summarized in table II, along with

comparisons of the predicted frequencies. The predicted

frequencies are normalized using the BOSOR code results as the

baseline. The generalized masses were normalized using the

theoretical value obtained by direct integration of the square of

the analytically perfect mode shape multiplied by the material

density. For the MSCC comparisons, mode shapes predicted by BOSOR

were used as the "correct" shape.

A study of the results summarized in table II shows again that

the lumped-mass matrix provides better frequency predictions than

does the consistent-mass matrix for the NASTRAN QUAD4 shell

element. Note that for the 9-node by 9-node mesh, the error for

the consistent-mass matrix is over 30 per cent. A finer mesh (17

by 17) with the consistent-mass matrix provides better frequency

approximations, but the prediction is still not as good as for the

lumped-mass matrix with a coarser mesh. The generalized mass is

in considerable error for both QUAD4 cases in which the consistent-

mass matrix is used.

The generalized mass is a much more sensitive measure of mode

shape error than the MSCC, as evidenced by data for the ABAQUS

results that used the S8R5 element. Here the MSCC is quite close
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to 1.0 for the 9-node by 9-node mesh, but the generalized mass is
over 30 per cent in error. As the mesh is refined, the generalized
mass improves, but it is still not as accurate as for the QUAD4
when a lumped-mass matrix is used. Note that the performance of
the ABAQUS$4R5 element compares favorably with the NASTRANQUAD4
element.

The SPAR E43 element, which performed nearly as well as the
QUAD4 in predicting frequencies for all the shell modes considered
in this study, apparently predicts both the frequency and
generalized mass accurately if the coupled-mass matrix is used.
However, somewhat unexpectedly, this element does not perform quite
so well with a lumped-mass matrix. In this case, the frequency is
predicted accurately but the mode shape has considerable error
associated with it, as evidenced by the underprediction of the
generalized mass.

CONCLUSIONS

Among the elements considered in this study, the NASTRANQUAD4
element with a lumped-mass matrix seems to be the best choice when
the geometry is a cylindrical shell. A general rule seems to be
that, for any element considered here, consistent-mass matrices
should be avoided for this particular geometry. On the other hand,
for flat-plate geometries, the consistent-mass matrix outperforms
the lumped-mass matrix.

These conclusions imply that choices are difficult when
modeling geometries that deviate from the simple geometries
considered here. It is possible that an alternate method of
deriving the mass matrix, such as the SPAR coupled-mass matrix,

would generate a result that would be more generally applicable.

Note that it seems to perform well for both geometries. However,

for the present, if the geometry is predominantly cylindrical, the

lumped-mass matrix should always be used with the NASTRAN QUAD4

element.
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TABLE I

PREDICTED FREQUENCIES (Hz) FOR CYLINDRICAL SHELL USING BOSOR (BLEVINS)

FOR EVEN CIRCUMFERENTIAL HARMONICS (n) AND ODD LONGITUDINAL HARMONICS (m).

1

2 19.61 (21.82)

4 7.92 (8.27)

6 7.32 (7.59)

8 10.76 (11.68)

3

47.97 (48.61)

33.27 (33.85)

23.64 (24.00)

20.63 (20.94)

5

54.69 (54.83)

47.05 (47.30)

39.56 (39,83)

35.18 (35.47)

TABLE II

COMPARISONOF FREQUENCY,GENERALIZEDMASS,AND MODESHAPEPREDICTED
BYVARIOUSFINITEELEMENTMODELSFORCYLINDRICAL-SHELLMODE n=8 m=5.

Nodes/side Computer code/ Mass Normalized Mode shape Normalized

9

9

9

17

9

9

9

17

element

SPAR/E43

SPAR/E43

ABAQUS/S8R5

ABAQUS/S8R5

ABAQUS/S4R5

NASTRAN/QUAD4

NASTRAN/QUAD4

NASTRAN/QUAD4

matrix

coupled

lumped

consistent

consistent

lumped

lumped

consistent

consistent

_equency

1.032

1.046

0.982

1.010

0.987

1.014

1.336

1.066

correlation coef.

0.9995

0.9853

0.9998

0.9991

generalized mass

1.011

0.810

0.677

0.971

0,995

1.010

0.603

0.876
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mode I mode 2 mode 3

f=0 2055 f=0,3015 f=0.3722

Figure i. Mode shapes and frequencies (Hz) for flat plate.
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Figure 2. Frequency convergence for mode 1 of a flat plate

as a function of mesh density for different finite elements.

69



-2

O

-6

-8

"'-.

ABAQUS

(consistent)\_

I i I

4 6 8 10 12 14 16 18

nodes per side

lumped consistent average SPAR (coupled)
---A ....... <>...... -,_--

I I J

Figure 3. Frequency convergence for mode 2 of a flat plate

as a function of mesh density for different finite elements.
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Figure 5. Frequency convergence for mode n=2, m=l of cylindrical

shell as a function of mesh density for different finite elements.
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